Stochastic Grid Bundling Method for Bermudan

In Simple LIBOR Test Case, SGBM is 4x—6x Faster than Longstaff—Schwartz for Similar Accuracy
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Bermudan Options

Fix times 0 =Ty < 11 < ... < Ty = T and let (S¢)¢>( denote a risky
asset. The value of a Bermudan option with payoff £ 1s defined as

V(Ty, S(Th)) = maxE [hg((:)))]

where (B¢)y>( is a bank account and 7T is all {77, } %:0 valued stopping
times. Determining V' requires finding the continuation value
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Longstaff—Schwartz Method (LSM)

This method determines () by choosing basis functions ¢1, .
solving the regression equation
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for coefficients 31, . .., Ok at each time step 7},,. This amounts to mak-
ing two approximations:

K
V(Tins1, S(Tont1)) = ) B (T, S(Tin))
k=1

e |/ 1s approximated by a linear combination of basis functions on the
entire path space

e S(T),.+1) is approximated by S(7};,)

Stochastic Grid Bundling Method (SGBM)

At each time step 1;,, SGBM partitions the path space into a number of
“bundles”. Within each bundle it makes the regression approximation

K
V(Tt1, S(Tiny1)) = Z Brd(Tim+1, S(Tim+1)).
k=1

e Each regression defines a local approximation on its bundle, thus
avoiding making a global approximation over the whole path space.
This means fewer basis functions are needed.

e The regression only uses data at time 7;,, . 1, thus avoiding the second
Longstaff-Schwartz approximation S(7;,, 1) ~ S(T)

Using the equation above gives
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where 1);.’s are conditional expectations of discounted basis functions.

The Test Case: Bermudan Swaption on LIBOR

We considered a Bermudan Swaption (10yr maturity, 4yr reset, semi-

annual payments and exercises) driven by a one factor LIBOR Market
Model (LMM).

Basis Functions

For Longstaff-Schwartz we took three basis functions ¢; = 1, ¢o = the
next-to-maturity swap rate, and ¢3 = ¢%. This gave sufficient accuracy.
For SGBM it proved sufficient to take only ¢ and ¢o.

Computing )9

SGBM requires 19, the conditional expectation of the discounted next-
to-maturity swap rate. Under LMM there is no analytic formula for
this. We approximated o with the swap rate approximation formula
introduced by Rebonato. Accuracy was tested with nested Monte Carlo
and found to be fairly accurate, although on average low-biased.

Bundling

Partitioning the multidimensional LMM path space would be prohibitively

expensive. Instead we used 19 to map the path space onto R and bun-
dled this one-dimensional space.

Results of the Test Case

We considered two price estimators: the direct estimator produced by
the regression framework, and a path estimator applying this exercise
strategy to a new set of paths. The path estimator 1s a lower bound.

Figure 1 shows that SGBM consistently produces better exercise
strategies (path estimator) than Longstaff—Schwartz.

Figure 2 shows that the SGBM direct estimator has less than half
the standard error of Longstaff—Schwartz.

Figure 3 plots overall runtimes (LIBOR path generation + direct esti-
mator CPU time) vs standard error. Although the SGBM direct esti-
mator 1s roughly 3x more expensive than Longstaff—Schwartz, it needs
roughly 10x fewer paths to achieve a given standard error. Since LI-
BOR sample paths are fairly expensive to generate, the result 1s that
the SGBM direct estimator is between 4x and 6x faster overall for
a given standard error.
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Figure I: Price vs number of bundles. Note the SGBM path estimator
1s consistently better (higher) than Longstatf—Schwartz.
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Figure 2: Standard errors of SGBM (8 bundles) vs Longstaff—Schwartz.
Note Longstaff—Schwartz needs roughly 10x more paths to achieve the
same standard error.
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Figure 3. Overall runtime (LIBOR path generation + direct estima-
tor) for SGBM (8 bundles) vs Longstaff—-Schwartz for sample sizes
n = 104, 105, 10°. For a given standard error, the SGBM direct estima-
tor 1s between 4x and 6x faster than Longstaff—Schwartz.
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