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Figure 1: Price vs number of bundles. Note the SGBM path estimator
is consistently better (higher) than Longstaff–Schwartz.
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Figure 2: Standard errors of SGBM (8 bundles) vs Longstaff–Schwartz.
Note Longstaff–Schwartz needs roughly 10x more paths to achieve the
same standard error.
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Figure 3: Overall runtime (LIBOR path generation + direct estima-
tor) for SGBM (8 bundles) vs Longstaff–Schwartz for sample sizes
n = 104, 105, 106. For a given standard error, the SGBM direct estima-
tor is between 4x and 6x faster than Longstaff–Schwartz.
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where ψk’s are conditional expectations of discounted basis functions.

The Test Case: Bermudan Swaption on LIBOR
We considered a Bermudan Swaption (10yr maturity, 4yr reset, semi-
annual payments and exercises) driven by a one factor LIBOR Market
Model (LMM).

Basis Functions
For Longstaff–Schwartz we took three basis functions φ1 = 1, φ2 = the
next-to-maturity swap rate, and φ3 = φ22. This gave sufficient accuracy.
For SGBM it proved sufficient to take only φ1 and φ2.

Computing ψ2
SGBM requires ψ2, the conditional expectation of the discounted next-
to-maturity swap rate. Under LMM there is no analytic formula for
this. We approximated ψ2 with the swap rate approximation formula
introduced by Rebonato. Accuracy was tested with nested Monte Carlo
and found to be fairly accurate, although on average low-biased.

Bundling
Partitioning the multidimensional LMM path space would be prohibitively
expensive. Instead we used ψ2 to map the path space onto R and bun-
dled this one-dimensional space.

Results of the Test Case
We considered two price estimators: the direct estimator produced by
the regression framework, and a path estimator applying this exercise
strategy to a new set of paths. The path estimator is a lower bound.

Figure 1 shows that SGBM consistently produces better exercise
strategies (path estimator) than Longstaff–Schwartz.

Figure 2 shows that the SGBM direct estimator has less than half
the standard error of Longstaff–Schwartz.

Figure 3 plots overall runtimes (LIBOR path generation + direct esti-
mator CPU time) vs standard error. Although the SGBM direct esti-
mator is roughly 3x more expensive than Longstaff–Schwartz, it needs
roughly 10x fewer paths to achieve a given standard error. Since LI-
BOR sample paths are fairly expensive to generate, the result is that
the SGBM direct estimator is between 4x and 6x faster overall for
a given standard error.

Bermudan Options
Fix times 0 = T0 < T1 < . . . < TM = T and let (St)t≥0 denote a risky
asset. The value of a Bermudan option with payoff h is defined as
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where (Bt)t≥0 is a bank account and T is all {Tm}Mm=0 valued stopping
times. Determining V requires finding the continuation value
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Longstaff–Schwartz Method (LSM)
This method determinesQ by choosing basis functions φ1, . . . , φK and
solving the regression equation
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for coefficients β1, . . . , βK at each time step Tm. This amounts to mak-
ing two approximations:

• V is approximated by a linear combination of basis functions on the
entire path space

• S(Tm+1) is approximated by S(Tm)

Stochastic Grid Bundling Method (SGBM)
At each time step Tm, SGBM partitions the path space into a number of
“bundles”. Within each bundle it makes the regression approximation

V (Tm+1, S(Tm+1)) ≈
K∑
k=1

βkφ(Tm+1, S(Tm+1)).

• Each regression defines a local approximation on its bundle, thus
avoiding making a global approximation over the whole path space.
This means fewer basis functions are needed.

• The regression only uses data at time Tm+1, thus avoiding the second
Longstaff–Schwartz approximation S(Tm+1) ≈ S(Tm)

Using the equation above gives
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Stochastic Grid Bundling Method for Bermudan Swaptions
In Simple LIBOR Test Case, SGBM is 4x–6x Faster than Longstaff–Schwartz for Similar Accuracy
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