
Parallel Convolution Gridding for Radio Astronomy Applications
Running on KNL and GPU

Jacques du Toit Nick Dingle Edvin Hopkins (Numerical Algorithms Group)
Fred Dulwich Benjamin Mort Stef Salvini Wes Armour (Oxford e-Research Centre, University of Oxford)

Background
Convolution gridding is an important part of radio astronomy image
processing. Interferometers measure fringe visibilities of celestial ob-
jects. These are convolved in the Fourier domain with a set of convo-
lution kernels, which don’t all have the same size support. Results are
accumulated into a grid. A visibility’s w coordinate determines which
kernel is used.

This plot shows the number of times each grid point is updated for sim-
ulated Square Kilometer Array (SKA) data. Note the extremely high
concentration near the centre, a feature of this telescope. The gridding
algorithm is difficult to optimize because:

• The spatial distribution of visibilities leads to random memory ac-
cess patterns and poor reuse of cached data.

• Stochastic race conditions exist on parallel grid updates.

• Complex memory access patterns to the convolution kernels in-
hibit efficient vectorization.

NAG is Approached to Optimize the Code
As part of preliminary work on the Square Kilometer Array’s digital
signal processing pipeline, NAG was approached by the Astronomy
group at Oxford University to optimize the code on NVIDIA P100
GPU and Intel KNL.

Parallelization Using Atomics
As a first step, the code was parallelized using atomics to handle the
race conditions. It was infeasible to run the serial code on the GPU.

Tiling for Better Data Locality
Partitioning the grid into tiles improves data locality. Tiles were sized
to fit into registers (GPU) or cache memory (KNL). Visibilities were
assigned to tiles using a parallel bucket (radix) sort. Each tile was pro-
cessed by a thread block (GPU) or thread (KNL). Because tiles don’t
overlap the race conditions could be avoided.

The distribution of grid updates across tiles is highly uneven, leading to
poor load balance. Ordering tiles by the number of visibilities and pro-
cessing from highest to lowest mitigated this. A different approach was
needed on the GPU to handle the highly concentrated central region.

Improving Memory Access Patterns
Convolution kernel data is accessed in a complicated way: it is strided
for “kernel oversampling” and traverses the arrays in x and y directions
to exploit symmetry. This leads to non-coalesced loads on the GPU and
vector gathers on the KNL, both of which are expensive. We decoded
the access pattern and found a way to enforce contiguous data access.
This enabled coalesced loads and eliminated the vector gathers, at the
expense of introducing some data duplication on the KNL only.

Performance Results
GPU results were from an NVIDIA P100, while KNL results were gen-
erated on a 68-core Xeon Phi 7250 (Knights Landing) 1.4GHz machine
with 94GB of DDR RAM and 16GB of high-bandwidth MCDRAM.

The chart gives improvements in runtimes for the SKA data set on the
left. The KNL serial time was 172s.

Lessons Learnt
In optimizing the code on the two architectures a number of things
became clear

KNL:
• The KNL has 37MB cache overall, but only 272KB cache per thread

(compare with 2.83MB cache per thread on x86). Getting good per-
formance for cache-hungry applications like this one is challenging.

• Threads on a core share L2 cache but there’s no way to synchronize
between them, making it hard to exploit L2 cache effectively.

• Traditional x86 CPUs with bigger caches are far more forgiving.

• Tiling is important on KNL and x86: atomics are not that fast.

• Using MCDRAM made no difference as the code was bound by
memory latency not bandwidth.

P100:
• Hardware atomics are surprisingly fast.

• Effective use of the register file is crucial for peak performance.

• Non-coalesced loads are expensive even on modern GPUs.

• Coalesced memory access is easier to achieve on GPUs than contigu-
ous access is on CPUs, because loads can be coalesced even if con-
secutive threads are not accessing consecutive memory addresses.

October 2017 Corresponding author: Jacques du Toit (jacques@nag.co.uk) www.nag.com


