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Recommendation of use
The number of the constraints is not the only factor affecting the convergence of the solvers:

NAG introduces at Mark 26 an interior point method (e04st) complementing
the existing SQP solver (e04vh) for large NLP problems

SQP (e04vh) advantages
• Efficient on highly constrained problems

• Can capitalize on a good initial point

• Stays feasible with respect to the linear constraints
throughout the optimization

•Usually better results on pathological problems

•Usually requires less function evaluations

• Infeasibility detection

•Allows warm starting

IPM (e04st) advantages
• Efficient on unconstrained or loosely constrained

problems

• Can exploit 2nd derivatives

• Efficient for quadratic problems

• Better use of multi-core architecture

•New and simpler interface

Loosely constrained problems

Name No. No. SQP IPM
vars constrs time (s) time (s)

JIMACK 3549 0 542.42 8.12
OSORIO 10201 202 303.00 0.78
TABLE8 1271 72 3.80 0.04
OBSTCLBL 10000 1 40.84 0.50

Highly constrained problems

Name No. No. SQP IPM
vars constrs time (s) time (s)

MINC44 1113 1033 0.28 7.60
READING8 2002 1000 9.78 251.12
NCVXQP6 10000 7500 3.60 613.38
MADSSCHJ 201 398 0.34 5.51

Demonstration on a few selected problems from the CUTEst test set

SQP properties
• Perform lots of inexpensive iterations

•Work on the null space of the active constraints

⇒ The more active constraints there are, the cheaper
the iterations become.

SQP solvers scale very well to large NLP problems
with a high number of constraints

1. Initialization
• Build a quadratic model of the problem
• Take a first guess of the set of active constraints

2. Each iteration
• Solves the quadratic model, warm start it by the

active set estimation
•Updates xk+1 and the guess of the active con-

straints
• Builds a new quadratic model at xk+1

Sequential Quadratic Programming
SQP methods try to guess which inequality constraints gk are binding and iteratively refine that guess. Non-
binding constraints can be discarded (have no influence) at the current iteration. The solver then works on the
smaller space (null space) of the remaining constraints.

IPM properties
• Perform few computationally expensive iterations

• Rely on efficient underlying linear algebra

IPM solvers scale very well to large NLP problems
with a small number of constraints

Each iteration
• Performs one Newton iteration towards the solution

of the relaxed KKT system

•Updates the current solution estimate and the relax-
ation parameter ν

Interior Point Method
Inequality constraints are tricky to handle due to their “combinatorial” nature: either the inequality constraint
gk is binding (is active) or it has no influence (its associated dual variable is 0). This is expressed by the KKT
complementarity condition:

µkgk(x) = 0 for each k (1)

IPM does not tackle (1) directly, it works on its relaxation µkgk(x) = ν with ν > 0.

Introduction
Nonlinear programming is one of the main tools for mathematical modelling practitioners. The applications
span many industries and academic fields such as:

• finance (portfolio optimization, model calibration)

•multiphysics modelling (oil and gas reservoir modelling, meteorology, climate simulations, engineering)

• statistics (machine learning, data fitting)

Such models can be formulated as

min
x∈Rn

f (x)

subject to h(x) = 0

g(x) ≥ 0

where the objective f and constraints h and g are sufficiently smooth nonlinear functions. In modern large scale
applications, the number of variables n can be of an order of 104 or higher.

Solvers generally find a local solution (the best in a certain neighbourhood) satisfying the Karush–Kuhn–Tucker
(KKT) optimality conditions. Two main competing approaches:

• active-set Sequential Quadratic Programming (SQP)

• Interior Point Method (IPM)

Both approaches play an important part in practice because of the fundamentally different ways of handling
constraints.

In the rest of the poster, we compare two implementations of these methods in the NAG Library:

e04vh - nag opt sparse nlp solve (SQP) and e04st - nag opt handle solve ipopt (IPM)

Nonlinear Optimization: A Comparison of Two Competing Approaches
Active-set SQP vs. IPM

Jan Fiala & Benjamin Marteau (Numerical Algorithms Group)


