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1. Introduction
A correlation matrix C, has elements cij representing the pair-wise
correlation of entity i with entity j, that is, the strength and direction of
a linear relationship between the two. The matrix:
(a) is real, square and symmetric
(b) has unit diagonal and |cij| ≤ 1

(c) is positive semidefinite, its eigenvalues are positive or zero

An approximate correlation matrix is one that is not positive semidefi-
nite. Consider an application from finance:
• correlations between stocks are used to construct portfolios
• some data may be missing, leading to constructed matrices not being

positive semidefinite
• a mathematically true correlation matrix is required for analysis, and

we seek one that is, in some sense, near to the original matrix

This poster discusses the algorithms, and their properties, that
compute nearest correlation matrices in the NAG Library.

2. The Basic Problem and the Algorithms
Many of our algorithms find a true correlation matrix X that is closest
to the approximate input matrix, G, in the Frobenius norm, which may
be weighted. That is, we find the minimum of:

‖G−X‖F .
A Newton Method described by Qi and Sun [4] and improved at the
University of Manchester by Borsdorf and Higham [1] forms the basis
of four NAG routines: corrmat nearest, solving the basic problem, and
corrmat nearest bounded, corrmat h weight & corrmat nearest rank
which offer additional functionality.

Alternating Projections with Anderson
Acceleration [2] is used in corrmat fixed.
The input is repeatedly projected on to the
sets of semidefinite and unit diagonal ma-
trices, alternatively. This algorithm is
slower to converge than Newton, but allows the fixing of elements.

The Shrinking Method of Higham, Strabić and Šego [3] finds a true
correlation matrix, using a matrix of weights, H , of the form:

αT + (1− α)G, T = H ◦G.
The smallest α ∈ [0, 1] that gives a positive semidefinite result is found.
This is used in corrmat shrinking and corrmat target.

A choice of algorithms
Trade off between speed and nearness

Fix or influence matrix entries
Specify eigenvalues or rank

3. Basic Results
First we look at the three core algorithms solving the basic problem.
Below we show the norm of the original matrix compared to the com-
puted true correlation matrix and also the computation time.

n nearest fixed shrinking
100 0.058 0.058 1.265
200 0.198 0.198 4.974
300 0.3 0.3 8.392
400 0.462 0.462 13.615
500 0.603 0.603 18.901

‖G − X‖F . for the basic
problem for different n.

Times (secs) for the basic prob-
lem for different n.

The shrinking algorithm gives a ma-
trix far from the original, although it
is the quickest. Alternating projec-
tions is the slowest by far, but it is
not intended for this problem.

4. Forcing Positive Definiteness and Maximum Rank
Several routines in the NAG Library allow you specify a minimum
eigenvalue or a maximum rank. The affect of this is, inevitably, to
increase computation time and the distance from the orignal matrix.

5. Fixing a Block of Elements
Some correlations in an input matrix may be true. This leads to the need
to fix or weight a block of entries. The shrinking algorithm handles
this with the target matrix and alternating projections can be adapted
easily. The Newton algorithm is extended for the following norms in
corrmat nearest bounded and corrmat h weight respectively.

min ‖W 1/2(G−X)W 1/2‖F and min ‖H ◦ (G−X)‖F

Times (secs) for fixed block problem for different n.

The routine corrmat h weight is
the slowest and fails to fix the
elements. However, corrmat fixed
does fix the elements as required.
The other routines are much quicker,
with corrmat shrinking fixing the
block, but the affect on the re-
maining elements may not be
desired.

The plots on the right show the
difference between the input and
computed matrices for n = 200.
The darker the blue, the greater
the difference. We can see the
effect of the weights on the off-
block elements, which is severe
for the shrinking algorithm.

corrmat nearest bounded 0.274
corrmat h weight 0.203
corrmat fixed 0.200
corrmat shrinking 4.750

‖G−X‖F . for the fixed block
problem for different n.

corrmat nearest bounded corrmat h weight

corrmat fixed corrmat shrinking

6. Summary of Routines
Nearness
in Norm

Shrinking
Algorithm

Weights Fixing Min
E’value

Max
Rank

corrmat nearest X
corrmat nearest bounded X X X
corrmat h weight X X X
corrmat nearest rank X X
corrmat nearest shrinking X X
corrmat nearest target X X X
corrmat nearest fixed X X X
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