
Matrix Functions and the NAG Library www.nag.com Edvin Hopkins edvin.hopkins@nag.co.uk

To find out more, see the following papers, and references therein:

N. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, PA, USA, 2008.
A. H. Al-Mohy, N. J. Higham and S. Relton. Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM
J. Sci. Comput., 35(4), C394-C410
N. J. Higham and L. Lin. An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives. SIAM. J. Matrix
Anal. & Appl., 34(3), 1341-1360
E. Deadman, N. J. Higham and R. Ralha. Blocked Schur algorithms for computing the matrix square root. Proc of PARA2012, Springer–Verlag
E. Deadman and N.J. Higham. Testing matrix function algorithms using identities. ACM Trans. Math. Softw. 42(1) 2016.

References

• NAG is implementing new matrix function algorithms developed at
the University of Manchester. New routines have appeared from
Mark 23 of the NAG Library onwards.

• Parallelism needs to be built into new algorithms from the outset.

• Performance gain from parallelism is dependent on the input data.

• The best algorithm in serial may not be the best algorithm in parallel.

7. Summary

The fastest serial algorithm may not be the fastest in parallel.

The graph shows three sets
of timings for the block-
ing schemes:

• serial implementation,

• using threaded BLAS,

• explicitly parallelized
using OpenMP.

Standard and recursive blocking schemes for the matrix square root

The square root of a matrix can be found by solving recursively on
the upper triangular Schur form. Two blocking strategies are available,
‘standard blocking’ and ‘recursive blocking’.

6. Parallelizing the Matrix Square Root

For many algorithms, error bounds are not available, owing to the algo-
rithm’s complexity. How do we know we’re getting the ‘right’ answer?
(a) High Precision

• Matrix function can be computed in higher precision arithmetic.
• Condition number κ (a measure of the sensitivity of the problem to changes

in input) can also be computed.
• Normwise relative error in double precision estimate should be at most of

the order of u × κ, where u is the machine unit roundoff.

(b) Matrix Function Identities
Certain scalar identities apply to matrices, e.g.

exp(log(A)) = A,
sin2 A + cos2 A = I.

We can bound the residuals consistent with stability using Fréchet derivatives.

5. Testing and Error Analysis

The performance gain when moving from serial to parallel can be
highly dependent on the input data.

• The blocks in each superdiagonal can be computed in parallel.

• The performance gain depends on the eigenvalue distribution of A,
since this determines the diagonal block structure.

Eigenvalue distribution Speedup 1 core→ 8 cores
One block of size 1000 1 (no speedup)

20 blocks of size 50 5
1000 blocks of size 1 5

Stages of the Schur–Parlett algorithm

1. Compute a Schur decomposition A = QT Q∗,
where A ∈ Cn×n, T is triangular and Q is
unitary (this reduces the cost of subsequent
matrix multiplications).

2. Reorder Schur form, grouping similar eigen-
values together in diagonal blocks. Use
Taylor series for the diagonal blocks (closely
grouped eigenvalues improves convergence).

3. Compute off-diagonal blocks by repeated
solution of Sylvester equations.

4. Multiply by Schur vectors: f (A) = Q f (T )Q∗.

4. Parallelizing the Schur–Parlett Algorithm
The Schur–Parlett algorithm evaluates a general matrix function f (A)
using Taylor series on various specially chosen submatrices.

For exp(A), Taylor series or Padé approximants are more reliable when
‖A‖ is small. For log(A) or Ap (p ∈ R), they are more reliable when
‖A − I‖ is small. We can exploit the identities

exp(A) = exp(A/2s)2s
,

log(A) = 2s log(A1/2s
),

Ap = (A1/2s
)2sp, s ∈ N,

to decrease the relevant norms.

Scaling and squaring can produce accurate, efficient algorithms.

Aim: choose s and the Taylor or Padé degree m to compute f (A) with
backward error bounded by unit roundoff with minimal cost. Sharper
bounds can be obtained using ‖At‖1/t, t ∈ N. This prevents overscaling.

3. Scaling and Squaring

Taylor series provide a natural way of evaluating matrix functions:

exp(A) = I + A +
A2

2!
+

A3

3!
+ . . .

For a general function f , convergence is guaranteed provided the eigen-
values lie within the radius of convergence of the scalar Taylor series.

We can also use Padé approximants, the ratio of two rational functions:

• may produce approximations of a given accuracy at a lower cost.

• can be evaluated by explicity computing the rational functions, or
by using continued fraction or partial fraction representations.

2. Taylor Series and Padé Approximants

This poster discusses the techniques developed at the University of
Manchester to compute functions of matrices and the challenges

encountered in implementing these algorithms in the NAG Library.

Matrix functions are a generalization of scalar functions to matrices.
• Examples: exp(A), sin(A),

√
A, where A is square.

• Applications: Markov models in finance, differential equations, net-
works, computer animation software.

The Numerical Algorithms Group (NAG) has collaborated with the
University of Manchester on matrix function algorithms.

1. Introduction

Matrix Functions and the NAG Library
Results Matter. Trust NAG.


