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Data Fitting Introduction
Fitting a non-linear model to data is typically modelled as a minimisa-
tion problem, where the objective function serves as a measurement of the
quality of the model’s fit to data, depending on our parameters. A general
model involves summing over our data points,

minimize
x∈Rnvar

f (x) =

nres∑
i=1

χ(ri(x)),

where x is a vector holding our model parameters, of which there are
nvar. We have nres data points, and ri(x) = yi − φ(ti;x), i = 1, ..., nres
is the ith residual, equal to the difference between the observed and pre-
dicted values of the independent variable at time ti, denoted yi and φ(ti;x)
respectively.

The loss function χ has desirable properties such as being bounded from
below, and increasing with |ri (x) |. Summing over all data points then, the
objective function will be small when the model fits the whole dataset well,
which is what we want.

There are plenty of choices for function χ, and one important consideration
is robustness. A robust loss function is one which doesn’t get thrown off
easily by outliers in the data.

NAG’s Generalized Nonlinear Data Fitting solver (e04gn in the NAG Li-
brary) makes it easy to choose among several loss functions, including
l1-norm, l2-norm, and arctan. We used this solver with these options to
demonstrate the results produced by loss functions of varying robustness.

Single-Outlier Example
To investigate the robustness aspect, we’ll start with a toy dataset of 21
points generated from sin(t) with an outlier at t = 1.5, which is generated
by 5 sin(t).

We will fit it with a model,

φ(t;x) = x1 sin(x2t)

using first the l2 loss function, then the l1 loss function. The starting point
for each solve is x = (2.1, 1.4).

l2-Norm Loss Function
The l2-norm is one of the most common loss functions. This forms the
problem as a least squares regression,

minimize
x∈R2

f (x) =

21∑
i=1

ri(x)
2.

l1-Norm Loss Function
Using l1-norm loss gives us the problem,

minimize
x∈R2

f (x) =

21∑
i=1

|ri(x)|,

which is more robust against outliers. This means if some large portion
of the data is well-fitted by some solution x∗, there is likely to be a local
minimum very close to x∗ which is relatively undisturbed by the remaining
data that is outlying to the solution x∗.
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Comparison
The results in Figure 1 show
the model fitted with the l1
loss function was clearly bet-
ter than the model fitted with
the l2 loss function where
outliers contribute heavily to
the objective function and
search direction.

The Trade-Off of a Loss Function
There is a danger in choosing a very robust loss function. During an iter-
ative optimization process, a loss function which is robust against outliers
will usually prefer the data which is close to the current model. This means
that if the algorithm finds local minima of the objective function, the search
can fall into a local minimum when the model fits some subset of the data
very well but fits the majority of the data very badly.

To illustrate this, we will fit the same model to a new dataset generated by
5 sin(t), with 3 data points on each end generated by sin(t), using l1, l2, and
arctan loss functions (Figure 2).
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Contour Plots
In the contour plots below, the black circles represent the parameters used
to generate the data, the cyan circle represents the starting point for the
solver, and the cyan wedges represent the optimized solution found by the
solver.
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With the l2-norm in (a), the outliers generated by sin(t) have pulled the
optimal solution away from x = (5, 1). The contour plot for l2-norm loss
indicates that we don’t have to worry too much about what starting point
to use, since there are no local minima in the region displayed, other than
global best solution.

The behaviour of the solver is quite different when using an extremely
robust loss function like arctan loss, which looks like

minimize
x∈R2

f (x) =

21∑
i=1

arctan(ri(x)
2)

There are eight local minima in the contour plot for arctan (b), with seven
of them being substantially worse solutions than the global minimum, and
it is one of these we’ve converged to. In this case, the initial estimate led
to a model that only fit a small portion of the data very well.

In the l1-norm contour plot (c), there are still a few local minima that do not
correspond to the optimal solution, but the starting point of x = (2.1, 1.4)
still converges to the global minimum, which lies at x = (5, 1), meaning
the part of the dataset generated from sin(t) is effectively being ignored.
From the plots of the loss functions, we can see that l1-norm loss is more
robust than l2-norm loss but less so than arctan loss.

Conclusion
Your choice of loss function can affect your model’s sensitivity to outliers,
populate the search space with more local minima, and/or cause more sen-
sitivity to the starting point. Using the e04gn solver, it is easy to try
different loss functions while setting up your data fitting problem, ensuring
you spend your time solving for the right optimal solution.

Find more examples with source code at:
github.com/numericalalgorithmsgroup


