Nag

Background

Jonathan Boyle

As part of the EU-funded Performance Optimisation and Productivity
(POP) Centre of Excellence, NAG offers HPC expertise to organisa-
tions who want help to understand and improve the performance of
parallel software.

This poster describes NAG’s work on three different codes: WREF-
Chem, ADF and zCFD.

WRF-Chem

The Weather Research and Forecasting (WRF) Model 1s a mesoscale
numerical weather prediction system designed for both atmospheric
research and operational forecasting needs.

WRF-Chem couples chemistry into this model, enabling it to simulate
the emission, transport, mixing, and chemical transformation of trace
gases and aerosols simultaneously with the meteorology. WRF-Chem
1s used for investigation of regional-scale air quality, field program
analysis, and cloud-scale interactions between clouds and chemistry.

Speed-Up
=Y
|

0 | | | |
24 48 96 192

Frocesses

For the test case used we observed little speed-up 1n going from 96
to 192 cores. The main reason for this was poor computational load
balance between the MPI ranks. In addition a lot of time was spent in
MPI_Wait waiting for MPI_Irecv calls to complete.

A further study 1s now underway to investigate how the load balance
varies across the geographical decomposition in order to find ways in
which it might be improved.

October 2017

Sally Bridgwater

Nick Dingle Jon Gibson

ADF

ADF is the flagship code from the Netherlands-based company Soft-
ware for Chemistry and Materials (SCM). It 1s a computational chem-
istry application which uses density functional theory calculations to
predict the structure and reactivity of molecules.

NAG assessed the performance of a particular calculation (medium-
sized molecule with hybrid exchange-correlation functional) and 1den-
tified that the main 1ssue was computational load imbalance:

Code Region 1 16 32 64, 128 CodeRegion2 16 320 64 128
Global Efficiency 0.98 0.84| 0.61] 0.52| |Global Efficiency 0.99 0.76| 0.46| 0.39
Computational Scalability | 1.00 0.94) 0.86| 0.76 Computational Scalability | 1.000 0.94 0.83 0.72
Parallel Efficiency 0.98 0.89) 0.71 0.68 Parallel Efficiency 0.99 0.81 0.56 0.54
Load Balance 1.000 0.93 0.76| 0.77 Load Balance 0.99 0.83] 0.58 0.60

Communication Efficiency| 0.99| 0.96 0.94 0.89
Serialization Efficiency | 0.99 0.99, 0.98 0.95

Communication Efficiency| 1.00 0.98 0.96| 0.90
Serialization Efficiency 1.00, 0.99| 0.99, 0.97

Transfer Efficiency 0.99) 0.97] 0.96/ 0.93 Transfer Efficiency 1.00, 0.98 0.97] 0.93
IPC Scalability 1.00 0.99 0.96] 0.93 |IPC Scalability 1.00 0.99, 0.96] 0.95
Instructions Scalability 1.00 0.98 0.95| 0.91 |Instructions Scalability 1.000 0.99| 0.98 0.96
Frequency Scalability 1.00 0.96 0.93 0.89| |Frequency Scalability 1.00 0.94 0.82] 0.74

We 1dentified that this was because node masters can spend a lot of
time waiting to receive work from the global master rank, which leads
to a significant amount of idle time for the rest of the ranks in a node.

THREAD 1.1.1

THREAD 1.17.1

THREAD 1.33.1

THREAD 1.45.1

THREAD 1.&5.

THREAD 1.81.

THREAD 1.97.

THREAD 1.113.

THREAD 1.128.

The horizontal white lines show the times that the node masters are
waiting to get more data from the global master. The yellow lines con-
nect the start and end points of communications. The green and blue
points are the slave ranks checking to see i1if new work 1s available.

We estimated that improving the load balance could lead to a 2x 1n-
crease 1n performance. SCM implemented a dynamic load balancing
scheme and observed a reduction in runtime from 4.2s to 2.0s on a
particular calculation.

support@nag.co.uk

ﬁ

HPC Software Optimisation Highlights from the POP Project

(Numerical Algorithms Group)

zCFD

zCFD by Zenotech (https://zcfd.zenotech.com/) 1s a den-
sity based finite volume and Discontinuous Galerkin (DG) computa-
tional fluid dynamics (CFD) solver for steady-state or time-dependent
flow simulation. It decomposes domains using unstructured meshes.

zCFD comprises a Python package (zCFD-driver) that calls com-
putational kernels written in C++. NAG investigated the performance
of the C++ part of the DG solver only.

Based on our findings Zenotech made a number of changes to the code:

e Changing the s1urm CPU governor setting to boost performance on
heavily loaded cores.

e Removing an inline keyword allowed the compiler to better opti-
mise the code and ensured all OpenMP pragmas were enabled.

e Adding a small extra calculation avoided going through a very slow
codepath in pow () and thus incurring additional load imbalance.

e Switching from static to dynamic OpenMP scheduling with dy-
namically adjusted choice of chunksizes.

e Increasing average CPU utilisation by not creating OpenMP regions
on multiple threads.

e Tweaking memory management, e.g. when calling BLAS routines.

These led to a 3x performance improvement on 12 OpenMP threads.

Acknowledgements

We would like to thank the University of Manchester (WRF-Chem),
SCM (ADF) and Zenotech (zCFD) for giving us permission to show-
case the work they have undertaken with POP.

The other POP project partners are Barcelona Supercomputing Cen-
ter, Juelich Supercomputing Center, RWTH Aachen, HLRS Stuttgart
and TERATEC. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No. 676553.

Performance Optimisation
and Productivity

www.nag.com

