
April 2017 Corresponding author: Jacques du Toit (jacques@nag.co.uk) www.nag.com

Active xi, yi, xii, yii;
MAP_IF(Active, time==0) {

xi = g2model.x0; yi = g2model.y0;
} MAP_ELSE {

xi = Xt(path,time-1); yi = Yt(path,time-1);
} MAP_ENDIF;
MAP_CALL(Active, g2model.applyEulerIncrement(time, dt, dW1, dW2,

xi, yi, xii, yii));
Xt(path,time) = xii;
Yt(path,time) = yii;

}
MAP_FOR_END;

}
}
/* ... snip ... */

Results for CVA Prototype
The table below gives runtimes (in ms) and memory use (in MB) for
the whole (heterogeneous) application:

gcc clang VS2015 nvcc :
total

nvcc :
GPU

Mem

passive 1,650 2,070 900 184 15 68
dco/map 5,024 5,370 24,590 370 111 176

tape 12,440 9,310 23,500 N/A N/A 4,890

Results for Local Volatility Monte Carlo Kernel
The table below gives runtimes (in ms) and memory use (in MB) of
a local volatility FX basket pricer. There are 10 assets and the basket
is priced with Monte Carlo using 10,000 sample paths and 360 time
steps. The tape based implementation features an optimised check-
pointing strategy and uses virtually the same amount of memory as a
handwritten adjoint. Nevertheless the dco/map runtime is substan-
tially less due to the meta adjoint programming

Linux
clang gcc nvcc Mem

passive 1,461 1,406 18 430
dco/map 3,031 3,025 83 827

tape 13,579 11,011 N/A 835
Windows

clang VS2015 Intel2015 Mem
passive 1,172 1,510 1,421 430

dco/map 4,384 10,241 11,671 827
tape 16,125 24,025 18,833 835

To arrange access to dco/map please email support@nag.co.uk

Code Samples from the CVA Prototype
template<class Base> class CurveInterpolator {

/* ... snip ... */
template<class Active> class Functions {

const dco_map::array_t<Active,dco_map::reduction_push> knots;
const dco_map::array_t<Active,dco_map::reduction_push> curveValues;
// Simple linear interpolation
FUNDECL void valueAt(const Base & t, Active &out) const {

int i;
for(i=0; i<n; i++) { if(knots[i]>=t) { break; } }
out = curveValues[i] + (curveValues[i+1] - curveValues[i])

/ (knots[i+1] - knots[i]) * (t-knots[i]);
}
/* ... snip ... */

};

template<class Base> class G2InterestRateModel {
/* ... snip ... */
template<class Active> class Functions {

const dco_map::connector_t<Active> a, b, rho, x0, y0;
const CurveInterpolator<Base>::Functions<Active> sigmaCurve,

etaCurve, timeZeroRatesCurve, timeZeroForwardSpread;

// Bond price in the G2++ model: V() is a class member function
FUNDECL void zeroCouponBondPrice(const Base &t, const Base &T,

const Active &xt, const Active &yt, Active &ret) {
Active rT;
MAP_CALL(Active, timeZeroRatesCurve.valueAt(T, rT));
const auto zeroBond_0_T = exp(-rT * T);
MAP_IF(Active, t <= 0) {

ret = zeroBond_0_T;
} MAP_ELSE {

Active sigmat, etat, rt, v;
MAP_CALL(Active, timeZeroRatesCurve.valueAt(t, rt));
const auto zeroBond_0_t = exp(-rt * t);
MAP_CALL(Active, sigmaCurve.valueAt(t, sigmat));
MAP_CALL(Active, etaCurve.valueAt(t, etat));
MAP_CALL(Active, V(t, T, sigmat, etat, v));
ret = zeroBond_0_T/zeroBond_0_t * exp(0.5*v -

(1-exp(-a*(T-t)))*xt/a - (1-exp(-b*(T-t)))*yt/b);
} MAP_IF_END;

}
/* ... snip ... */

};

template<class Base, class Active> __global__ void makeSamplePaths(...)
{

const G2InterestRateModel<Base>::Functions<Active> g2model(...);
dco_map::array_t<Active> xt(nPaths*nEulerSteps,d_xt, d_a1_xt);
dco_map::array_t<Active> yt(nPaths*nEulerSteps,d_yt, d_a1_yt);

const auto rho = g2model.rho; const auto corr = sqrt(1-rho*rho);
for(int path=tid; path<nPaths; path += blockDim.x*gridDim.x) {

MAP_FOR(Active, time, 0, nEulerSteps-1, 1) {
// Read the random numbers and correlate them
const auto z1 = Z(path,time,0);
const auto z2 = Z(path,time,1);
const auto dW1 = z1; const auto dW2 = rho*z1 + corr*z2;
const t = time*dt;

Making Adjoints of C++ Codes
The C++ language is so complex that no AD compilers can handle it.
To get an adjoint, we must write it by hand or use an operator overload-
ing AAD tool. Handwritten adjoints are tedious to write and maintain,
while operator overloading tools have a tape which must be managed.
The tape is particularly problematic on accelerators since each thread
(or potentially each AVX lane) needs its own. On GPUs this is just
impractical.

Meta Adjoint Programming
dco/map is a tape–free operator overloading AAD tool. Since it uses
operator overloading it can handle many C++11 codes. It uses meta
programming to instantiate sections of the adjoint code at compile time,
re–using program data on the stack. This technique is called meta ad-
joint programming and creates highly efficient adjoint codes.

Key Features of dco/map

• Efficient adjoints through C++11 meta adjoint programming

• First and second order tangents

• First order adjoints (second order in development)

• Thread safe by design: high performance array and scalar types for
shared input data

• Unified code: a single source code can be run passively, in tangent
mode or in adjoint mode

• Support for user defined custom “tape”

• Mixed precision adjoint types in development

• Supports CUDA and OpenMP (AVX512 SIMD in development)

• Supports Windows (VS2013 and higher) and Linux (gcc 4.6.0 and
higher)

• Existing source will need refactoring to fit with dco/map program-
ming model

The tool is already being used in pre-production XVA projects.

An In–House CVA Prototype
NAG has produced an in–house prototype CVA code demonstrating
how to combine dco/map and CUDA to accelerate CVA applications.
The code uses the G2++ model with wrong way risk and the netting set
is a portfolio of swaps. Setup, calibration and final aggregation is on
the CPU using tape based AD, while the Monte Carlo uses dco/map
and can be run on CPU or GPU with minor code changes.

High Performance Tape–Free Adjoint AD for C++11
Introducing dco/map, a cross–platform, accelerator ready AAD tool

Jacques du Toit (NAG), Johannes Lotz (RWTH), Klaus Leppkes and Uwe Naumann

