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We calibrated the model using the finite volume ADI method and ob-
tained the following leverage surface:

To evaluate the accuracy of the calibration, we compared the marginal
SLV density in x with the density of the local volatility model at T .
The two agree to within 1e-3. We then compared the implied volatility
quotes under the local volatility model to the implied volatilities under
the calibrated SLV model. The difference ε = |σimp,LV −σimp,SLV | is
given below.

K/S0 0.75 0.80 0.90 1.0 1.10 1.20 1.25
σimp,LV 20.48 19.10 16.16 12.50 11.52 11.93 12.30

ε 1.3e-2 8.9e-3 2.9e-3 7.4e-4 4.3e-3 1.0e-2 1.5e-2

Implementation and Performance
The Fortran code uses preconditioned GMRES to solve the Rannacher
systems. The independent tridiagonal ADI systems are all solved in
parallel. On a 12 core, dual socket machine we observe the following
performance for calibrating an SLV model on a 600× 300 grid:

Num Threads 1 2 4 8 12 24 48
All Rannacher steps 2.1s 1.79s 1.07s 0.86s 0.68s 0.67s 0.78s

One ADI step 75ms 59ms 37ms 24ms 18ms 13ms 7ms

Code Availability
The code with be in the forthcoming version of the NAG Library.
Please contact support@nag.co.uk for early evaluation options. Fur-
ther performance and algorithmic improvements are currently being
explored.

SLV Calibration on EUR/USD Data from 2 March 2016
We took market FX quotes and chose challenging stochastic parameters

α = 0.5 κ = 0.3 η = 0.04 σ = 0.61 ρ = 0.63 T = 0.5

The Feller value is 0.65 indicating strong violation of the Feller condi-
tion. A modified SSVI method gave the input local volatility surface:

Stochastic Local Volatility Model
We consider models of the form
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Results are presented for the popular SLV Heston model (α = 1/2) but
the method handles other values of α as well.

Calibrating the Leverage Surface
We must compute a leverage surface σSLV consistent with today’s
prices. This is done by providing a local volatility surface σLV and
then using Gyöngy’s Theorem

σ2SLV (x, τ ) =

σ2LV (x, τ )
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where p is the transition density of the process (Xt, Vt)t≥0. This density
can be obtained by solving the Kolmogorov forward equation
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A Second Order ADI Finite Volume Scheme
Solving the forward equation with finite differences is difficult: there
are no known boundary conditions at v = 0. We apply a standard sec-
ond order finite volume discretisation to the un–transformed forward
equation and impose zero–flux conditions at the boundaries. When
α = 1/2 we use upwinding at v = 0. We smooth the Dirac delta initial
condition with 4 Rannacher half steps, whereafter we use Hundsdorfer-
Verwer ADI as the time stepping method. We iterate Gyöngy’s Theo-
rem twice at each time step: this gives sufficient convergence for σSLV .

Validation Against Heston Model
We took α = 1/2 and validated the finite volume method against the
known Heston transition density. Convergence and density plots are
shown below. We used m1 mesh points in the x direction and m2 =
m1/2 points in the v direction. Convergence is second order when the
Feller condition is satisfied, but drops to between first and second order
when the Feller condition is violated due to the first order upwinding.
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