
Fast Implied Volatilities using Chebyshev Interpolation
Edvin Hopkins (NAG) Kathrin Glau (QMUL) Linus Wunderlich (QMUL)

Background
The Black–Scholes formula for the price of a call option is

C = S0Φ

ln
(
S0
K

)
+
[
r + σ2

2

]
T

σ
√
T

−Ke−rTΦ

ln
(
S0
K

)
+
[
r − σ2

2

]
T

σ
√
T

 ,

where T is the time to maturity, S0 is the spot price of the underlying
asset, K is the strike price, r is the interest rate and σ is the volatility.

An important problem in finance is to compute the implied volatility,
σ, given values for T,K, S0, r and C. Typically volatilities are com-
puted for large vectors of input data. An explicit formula for σ is not
available, so numerical approximation is required.

As the above figure illustrates, the volatility surface can be highly curved.
This makes approximating σ difficult.

In practice, most methods reduce the dimensionality of the problem by
substituting

x = rT + ln(S0/K), c = C/

√
S0e−rTK, v = σ

√
T ,

so that
c(x, v) = e

x
2Φ
(x
v

+
v

2

)
+ e−

x
2Φ
(x
v
− v

2

)
.

The algorithm of Jäckel (2015)
A modified Newton iteration is used to compute v(c, x). The input
domain is decomposed into four areas. Rational approximations are
used to provide initial guesses and reduce the number of iterations.

The method is accurate to almost machine precision. However, branch-
ing prevents vectorization and impedes performance.

Can we improve performance without losing accuracy?

Computing volatilities using Chebyshev interpolation
Under suitable conditions the error in Chebyshev interpolation decays
exponentially with the number of nodes (see e.g. Trefethen (2013)).

Glau et. al. (2018) exploit this by using a bivariate Chebyshev interpo-
lation of v(c, x), resulting in a vectorizable algorithm.

1. Offline phase: polynomial weights of a low-rank Chebyshev inter-
polation of the implied volatility surface are computed and stored for
four different input domains, using the algorithm of Jäckel (2015).
This step is only performed once, during code development.

2. Online phase: the input data is split into the four domains and the
Chebyshev interpolation is applied to each domain, choosing pre-
computed nodes from Step 1 according to the desired accuracy.

The error surface above shows that, for all but the most extreme input
values, accuracy close to machine precision is attained.

Does the domain decomposition impede vectorization?
A single-domain version was developed. Matlab R© prototypes suggest
that this should perform better due to increased vectorization.

The graph below compares our optimized implementations.

In our production code, the single-domain version performs worse than
the four-domain version. Why?

Performance analysis
Profiling of the production code shows that:

• the domain decomposition and rearrangement of data only account
for ∼ 3% of runtime,

• the Chebyshev interpolation accounts for the remainder,

• the single-domain version’s large domain size means more Cheby-
shev nodes are required to achieve a given accuracy, hence the longer
runtime.

This demonstrates how important it is to always profile your code!

Performance improvements were now sought by increasing the number
of domains in the decomposition, and using a blocking scheme during
the interpolation phase to improve cache use.

Performance results

The blocking scheme and the increased number of domains combine to
give a ∼ 3.3× speedup over Jäckel (2015).

Next steps and further improvements
There is scope for further performance improvements.
•What is the optimum number of domains?

• Can the blocking strategy be tuned further to decrease runtime?

To try a pre-release version of our code, contact NAG.

References
L. N. Trefethen (2013). Approximation Theory and Approximation
Practice. SIAM books.

P. Jäckel (2015). Let’s be rational. Wilmott 2015, 40-53.

K. Glau, P. Herold, D. B. Madan, C. Pötz (2018). The Chebyshev
method for the implied volatility. Accepted for publication in the Jour-
nal of Computational Finance, preprint of former version available on
arXiv:1710.01797

May 2019 Correspondence address: support@nag.co.uk www.nag.com


