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Typical sources of noise in finance
• Objective funtion F might be evaluated in the interest of speed with low precision algorithms (such as low

precision quadrature) which generate noise.

• Sometimes F is computed via Monte Carlo (for example hybrid models): as paths move in and out of the
money, noise is introduced into the objective function.

• Often the market prices yi have finite precision, for example prices are quoted to one basis point. Calibration
is not performed to high accuracy: it can be stopped when model prices are within one basis point (1BP) of
observed prices.

The third case is often acceptable when calibrating the Heston stochastic volatility model with term structure for
European options.

A use case in finance: the Heston model calibration
Let Cmodel(ρt, αt, σt, λt) represent the market price of a European option estimated by a Heston model with the
following piecewise-constant time-dependant internal parameters:

ρt, correlation parameters of Brownian motions in the Heston model

αt, volatility of the scaled volatility

σt, scaling parameter

λt, mean reversion rate

Under some assumptions, λt can be discarded from the calibration and set to a constant value.

We defined seven time intervals on which the parameters (ρt, αt, σt) are constant and must be fitted to real mar-
ket quotes Cmarketi . Calibrating the model therefore amounts to sequentially solving seven three-dimensional
nonlinear least squares problems with box constraints:

min

m∑
i=1

(Cmodeli (ρt, αt, σt)− Cmarketi )2

s.t. − 1 ≤ ρt ≤ 1, αt ≥ 0, σt ≥ 0

The table below shows a calibration of the Heston with term structure model to an accuracy of one basis point.
DFO-based solution delivers on average a 31% speedup.

Average number Average CPU
of evaluations time(s)

Finite differences 331 15.2
DFO 223 10.5

Table 2: Comparison of DFO (e04ff) and derivative based solvers (e04un) on 1355 Heston calibrations

DFO clearly outperforms derivative-based solvers when exact derivatives are lacking,
or a high-accuracy calibration is not required. DFO is absolutely essential when the

objective function evaluations are noisy.
Avg. number of evaluations needed to reach given precision over

20 runs. Error bars represent the proportion of runs that fail.
Evaluations to reach F (x) ≤ 10−5 w.r.t noise level

Robust noisy calibration
Noise can have undesired effects for optimization solvers. Model-based DFO solvers naturally present some
resilience to noise, further enhanced in the NAG Library by:

• Specific choice of algorithmic parameters

• Automatic detection of early convergence and smart “soft” restart procedures

Ilustration. A noisy calibration via nonlinear least squares with uniform noise ε ∈ [−ν, ν]

min
x∈Rn

m∑
i=1

(ri(x) + ε)2

Comparison between quasi-Newton method combined with finite differences (e04fc) and the new derivative-free
solver (e04ff) on the Rosenbrock test function:

Level of noise ν 0.0e00 1.0e-10 1.0e-08 1.0e-06 1.0e-04 1.0e-02 1.0e-01
Finite differences 89 92 221 ∞ ∞ ∞ ∞
DFO 28 21 21 21 21 31 ∞

Table 1: Number of objective evaluations required to reach a point within 10−5 of the solution without noise

NAG implements a DFO solver (e04ff) able to exploit the structure of calibration problems.

Advantages of derivative-free optimization

• black box models – AD is not possible

• noisy models – FD are inaccurate or wrong

• expensive models – FD are impractical

• if high-accuracy is not required, DFO requires fewer
function evaluations

Classical optimization relies on provided derivatives:

• explicitly written derivatives

• finite differencing (FD, bumping), ∂f∂xi ≈
f (x+hei)−f (x)

h

• algorithmic differentiation (see NAG AD tools)

Why derivative-free optimization (DFO)?
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