
Xi-FINTIQ
CVA in the Cloud

Nick Dingle Jacques du Toit Ian Hotchkiss Viktor Mosenkis Justin Ware

Introduction
NAG has developed in collaboration with Xi-FINTIQ a CVA demon-
stration code to show how the NAG Library and the Algorithmic Dif-
ferentiation (AD) tool dco/c++ can be combined with Origami to solve
large scale CVA computations. Here we report our experiences running
this demonstrator on a commercial cloud.

CVA Demonstrator
Origami is a lightweight task execution framework. Users combine
tasks into a task graph that Origami can execute on an ad-hoc cluster
of workstations, on a dedicated in-house grid, on production cloud, or
on a hybrid of all these. Origami handles all data transfers.

In our CVA demonstrator the trades in netting sets are valued in batches.
CVA is calculated per netting set by running the code forward as nor-
mal. The graph is then reversed and the dco/c++ adjoint version of
each task is run to calculate sensitivities with respect to market instru-
ments. The resulting graph has a large number of tasks with non-trivial
dependencies which Origami automatically processes and executes.

Optimizations
Before running in the cloud we profiled our demonstrator and identified
two main opportunities for performance improvement:

• Reducing the amount of I/O, as this may perform poorly;

• Optimizing the adjoint calculations, which consumed a significant
proportion of the execution time.

Reducing I/O
Earlier versions of our CVA demonstrator relied on writing interme-
diate results (e.g. the outputs from the intermediate tasks in the graph)
out to disk. Because this can introduce a large performance penalty, we
modified the demonstrator to maintain these results in memory instead.

Writing a Symbolic Adjoint
The original version of the CVA demonstrator spent approximately
25% of its runtime calculating the adjoint of the NAG Library linear
regression routine g02daf. We therefore wrote a symbolic adjoint to
improve the performance of the AD tasks:
! Assumes we are solving AˆT*Ax = AˆTb (C:= AˆT*A, d:=AˆTb)
! Compute adjoints of Cx = d and propagate adjoints of C & d to A & b
Subroutine g02da_sym (m, n, A, Aa, lda, b, ba, x, xa, Q, tau, &

work, lwork, ifail)
use nag_library, only: nag_wp
implicit none
Integer, Intent(in) :: m, n, lda, lwork
Real(Kind=nag_wp), Intent(In) :: A(lda,n), b(m), x(n), Q(lda,n), tau(n)
Real(Kind=nag_wp), Intent(Inout):: Aa(lda,n), ba(m), xa(n), work(lwork)
Integer, Intent(Inout) :: ifail
Real(Kind=nag_wp), Parameter :: one = 1.0_nag_wp

Call dtrtrs(’Upper’,’Transpose’,’Non-Unit’,n,1,Q,lda,xa,n,ifail)
Call dtrtrs(’Upper’,’No Transpose’,’Non-Unit’,n,1,Q,lda,xa,n,ifail)
Call dgemv(’No Transpose’, m, n, one, A, lda, xa, 1, one, ba, 1)
Call dger(m, n, one, b, 1, xa, 1, Aa, lda)
work = 0.0_nag_wp
Call dsyr2(’Upper’, n, -one, x, 1, xa, 1, work, n)
Call dsymm(’Right’,’Upper’,m, n, one, work, n, A, lda, one, Aa, lda)

End Subroutine g02da_sym

Scaling
We ran the code on Microsoft’s Azure cloud computing service. We
used D4s_v3 virtual machine (VM) images with 4 virtual CPUs and
16GB RAM running Ubuntu Server 18.04 LTS. The input data set con-
tained 8 netting sets comprising a total of 28 843 swaps and 23 875
Bermudan swaptions. The Monte Carlo simulation used 2 000 paths.
The code scales well as the number of VMs is increased.

Adjoint Efficiency
We measure the efficiency of our AD scheme by the adjoint ratio: the
runtime of the AD computation divided by the runtime of the forward
computation (lower is therefore better). We observe that the symbolic
adjoint reduces the adjoint ratio:

Performance
Computing CVA and sensitivities using Origami and AD offers signif-
icant performance benefits compared with using finite differences and
legacy grid execution software which might take many hours.

Elapsed Time
Origami (4 VMs x 4 cores) and AD 49m 08s
Origami and AD, symbolic adjoint 36m 23s

Possible Future Work
• Investigate different checkpointing strategies with the aim of reduc-

ing the code’s memory consumption;

• Port the code to other operating architectures, e.g. GPUs.

Availability
To find out more about this work and related NAG products please
contact support@nag.co.uk.

Acknowledgements
We gratefully acknowledge the support of the POP CoE which has
received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreements No. 676553 and
824080, and has partially contributed to this work.

We would like to thank Microsoft for providing the Azure Sponsorship
used to produce the results presented here.

May 2019 Correspondence address: support@nag.co.uk www.nag.com


