
October 2017 tim.schmielau@nag.co.uk jacques@nag.co.uk www.nag.com

 0 5000 10000 15000 20000 25000 30000
 0

 1

 2

 3

 4

 5

 6

 7

 8

S
p

e
e
d

u
p

 v
s

M
K

L
in

cl
u
d

in
g

 c
o
p

ie
s

m

Dgelss() of B m×9 Matrices

Speedup B=10
Speedup B=30

Speedup B=100
Speedup B=300

These plots show results for batches of m by 9 and m by 15 matrices.
The speedups increase strongly the more columns each matrix has.

 0 5000 10000 15000 20000 25000 30000
 0

 2

 4

 6

 8

 10

 12

S
p

e
e
d

u
p

 v
s

M
K

L
in

cl
u
d

in
g

 c
o
p

ie
s

m

Dgelss() of B m×15 Matrices

Speedup B=10
Speedup B=30

Speedup B=100
Speedup B=300

Single precision results are similar.

Matrices Arising from Basis Functions
Often X represents basis functions (e.g. low order polynomials) eval-
uated at m realizations of one or two underlying factors. In this case,
significant savings are possible by only transferring the factors to the
GPU and evaluating the basis functions there to construct the matrices.
Speedups of 10x to 20x should be possible depending on the problem.

Code Availability
The code is available to trial. Please contact support@nag.co.uk to
arrange access.

Use in CPU-Only Applications
On CPU we loop in parallel over all the matrices in the batch, and then
process each matrix serially by calling sgelss or dgelss in MKL.
This gives good performance on our test system Intel Core i7-7700K
@ 4.3GHz with 8 threads. It can solve relatively small problems in
the time it would take to transfer the problem to the GPU through the
PCIe3 bus. Although our code on P100 is over 20x faster than the
CPU, when data transfers are included we see speedups only for larger
problems.

 10 20 50 100 200 500
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S
p

e
e
d

u
p

 v
s

M
K

L
in

cl
u
d

in
g

 c
o
p

ie
s

Batch Size

Dgelss() of m×(3...9) Matrices

Speedup m=10,000
Speedup m=15,000
Speedup m=20,000
Speedup m=25,000
Speedup m=30,000

This plot shows speedup vs. MKL including transfers for batches where
each matrix hasm rows and a random Uniform(3, 9) number of columns.

 0 5000 10000 15000 20000 25000 30000
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S
p

e
e
d

u
p

 v
s

M
K

L
in

cl
u
d

in
g

 c
o
p

ie
s

m

Dgelss() of B m×6 Matrices

Speedup B=10
Speedup B=30

Speedup B=100
Speedup B=300

The plot above shows speedup vs. MKL including all transfers for
batches of m by 6 matrices. Larger problem sizes give larger speedups.

Linear Least Squares via SVD
We consider linear least squares problems

min
β∈Rn

∥∥y −Xβ∥∥2
for y ∈ Rm and X ∈ Rm×n where X is “tall and skinny”, i.e. m� n.
We focus on problems where

500 ≤ m ≤ 100, 000 and 3 ≤ n ≤ 40

although we can also handle matrices outside this range. The classical
algorithm takes a QR factorization of X followed by an SVD of the n
by n matrix R, and we do the same. The problem is that QR scales
badly for tall skinny X since it seeks parallelism across columns.

Batching Independent Problems Together
Better performance is possible if independent problems are batched to-
gether. This is often possible, e.g. XVA applications in finance. NAG
has made a highly optimized GPU code allowing different sized matri-
ces in the batch.

Performance vs. NVIDIA Libraries on P100
A batched GPU solver can be made using cuBLAS and cuSolver,
but performance is not good and all matrices in the batch must be of
the same size.

 0.001

 0.01

 0.1

 1

 10

 0 5000 10000 15000 20000 25000 30000
 0

 5

 10

 15

 20

 25

 30

 35

T
h
ro

u
g

h
p

u
t

[1
0
9
 m

a
tr

ix
 e

le
m

e
n
ts

 /
 s

e
co

n
d

]

S
p

e
e
d

u
p

 v
s

cu
B

LA
S

m

Dgelss() of 30 m×3 Matrices

Our GPU
cuBLAS GPU

Speedup

This graph shows our code vs. the NVIDIA libraries for 30 double pre-
cision m by 3 matrices. Our code is much faster. Results for different
size batches and matrices and for single precision are similar.

Batched Least Squares of Tall Skinny Matrices on GPUs
Tim Schmielau and Jacques du Toit

