
Analysis and Improvement of HPC Software Performance:
ADF Modeling Suite

Jonathan Boyle Sally Bridgwater Nick Dingle (Numerical Algorithms Group)

Background
As part of the EU funded Performance Optimisation and Productivity
(POP) Centre of Excellence, NAG is offering HPC expertise to organi-
zations who want help to understand and improve poor performance of
their parallel codes.

This poster describes POP work to improve multiplication of small
complex matrices in SCM’s ADF Modeling Suite, within periodic DFT
(density functional theory) computation for nanotubes, surfaces, and
bulk material.

Parallel complex matrix multiplication
The software is written in Fortran and MPI, and each matrix is stored
in two POSIX shared memory real arrays, which hold the real and
imaginary components of the matrix. Each matrix is duplicated on
every compute node, and two multiplication methods have been imple-
mented:

1. Each MPI process calls BLAS dgemm 4 times to compute a real and
imaginary block of the result matrix.

2. Shared memory matrices are converted to distributed matrices, and
PBLAS pzgemm computes the result matrix.

For both methods MPI collective communications are used to convert
the result data to a shared memory array on each node.

Parallel scaling
The graph shows the poor parallel scaling seen for small matrices, for
this case matrices are 3200 � 3200. Each compute node has 16 cores.

Performance analysis
We analysed parallel performance using a range of metrics which are
designed to expose the specific causes of poor scaling, for example:

• Transfer Efficiency: loss of efficiency due to time in MPI data com-
munication

• Serialization Efficiency: loss of efficiency due to wait time within
MPI

• Computational, IPC & Instruction Scalability: to identify if total use-
ful computational work is increasing.

The full set of metrics are described on the POP CoE website.

This table shows a subset of performance metrics for matrices of size
3200 � 3200, on 1, 4 and 8 compute nodes of the Barcelona Super-
computing Center MareNostrum III hardware. Green indicates good
efficiency/scaling values, and red indicates poor values.

Performance bottlenecks for pzgemm method
For the pzgemm method, the important performance bottlenecks are:

1. Very low transfer efficiency

2. Low load balance efficiency.

The MPI data transfer is largely unavoidable for this method. The load
imbalance was analysed and found to be caused by an imbalance in
useful instructions within pzgemm, with a clear relationship between
the number of instructions per process and the distribution of matrix
blocks on the BLACS process grid.

By modifying the block distribution, we were able to remove the load
imbalance (see graph in next column). However, this improved load
balance was at the expense of reduced transfer efficiency and serializa-
tion efficiency, with no overall reduction in run time.

Instructions distribution for pzgemm method
This data shows the number of useful instructions per process for ma-
trix block sizes of 50 and 64, the load imbalance is removed for the
block size of 50.

Performance bottlenecks for dgemm method
The low parallel scaling for the dgemm method is caused by:

1. Low transfer efficiency

2. Very low computational scalability, caused by increasing useful in-
structions and reducing IPC.

Our analysis of the algorithm identified a strategy to remove half the
collective communications needed to share the result matrix over the
compute nodes.

The increasing computational work occurs within dgemm, and our
work has identified more efficient block strategies for this method. This
is estimated to raise computational scalability from the current value of
0.47 up to 0.91, on eight compute nodes.

Overall the improvements to MPI communications and computational
scaling are estimated to give a 2x speed up for the 3200 � 3200 matrix
multiplication. These ideas are currently being tested as part of a POP
Proof of Concept study.

Acknowledgements
POP is funded from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 676553.

We’d like to give grateful thanks to SCM
(www.scm.com) for allowing us to present
these results.

October 2017 www.nag.com


