
Corresponding author: Jacques du Toit (jacques@nag.co.uk)

Performance Details of GPU Adjoint Code

Code Portion Runtime

Overall 523.2ms (code used 420MB GPU memory)

Forward Run 371.9ms (of which GPU MC kernel = 14.6ms)

Reverse Run 151.3ms (of which GPU Adjoint kernel = 85.1ms)

Accuracy of Mixed Precision Code

Figure 2: Plot and log-plot of error against log-gradient relative to dou-

ble precision tangent linear results. If the double precision gradient is

less than 0.0002 an absolute error is taken, otherwise a relative error is

taken. Note the number of very small gradients. The results are what

one would expect for a single precision code – in particular only 16

values are larger than 5.5× 10−5 and only 5 are larger than 10−4.

Figure 1: Runtime of parallel CPU

tangent linear code (right) relative

to GPU adjoint (left, value=1)

Test Problem and Hardware

We used 10,000 Monte Carlo paths

with 360 time steps per path. Im-

plied volatility surfaces were es-

timated from market data. Hard-

ware was a dual socket Intel Xeon

E5-2670 with an NVIDIA K20X.

GPU Accelerated Adjoint vs Tan-

gent Linear (bump and revalue)

Figure 1 shows the relative speeds

of a parallel (16 threads) CPU tan-

gent linear version of the code against

our GPU adjoint. GPU bar on the

left has value 1, the CPU code

took 860 times longer. Tangent

linear models have the same com-

putational complexity as bump and

revalue (finite differences).

ResultsAdjoints, dco and GPUs

Adjoints are sophisticated numerical techniques for computing a large

number of gradients quickly. To compute an adjoint, your computer

program must be run backwards. dco is an AD tool that does this by

• Running the code forwards and storing intermediate values in a tape

• Playing the tape back and computing the adjoint

No AD tools support GPUs, so we made a hand-written GPU adjoint

Monte Carlo kernel and used dco’s external function interface to

splice this into the tape. The adjoint program then becomes

• Stage 1: Use dco on CPU

• Stage 2: get values from dco, launch GPU Monte Carlo kernel

• Stage 3: get results from GPU and use dco on CPU

• Run dco tape back to get adjoint of Stage 3

• Tape gap left by Stage 2: copy adjoint from dco tape to GPU, run

adjoint kernel

• Get results from GPU to dco tape, run tape back to finish

Local Volatility FX Basket Option by Monte Carlo

We consider a basket call option written on 10 FX rates given by

dS
(i)
t

S
(i)
t

=
(

rd − r
(i)
f

)

dt + σ(i)
(

S
(i)
t , t

)

dW
(i)
t

for i = 1, . . . , 10 where rd is the domestic rate, r
(i)
f

is the foreign

rate and (Wt)t≥0 is a correlated 10-dimensional Brownian motion with
〈

W (i),W (j)
〉

t
= ρ(i,j)t. The local volatility function σ(i) is calibrated

from market implied volatility data. The price of the option is

P = e−rdTE





10
∑

i=1

w(i)S
(i)
T −K





+

where K > 0 is the strike and the w(i)s are a set of weights summing

to one. P is computed by Monte Carlo simulation.

Input Parameters to the Model

Input parameters are the strike, maturity, weights, rates, correlation

structure, and the 10 market implied volatility surfaces. In total there

are 438 inputs and the task is to compute sensitivities of the price with

respect to all.

GPU Accelerated Code: CPU → GPU → CPU

We developed a 3 stage code to price the basket option as follows:

• Stage 1: Setup (on CPU, double precision). Process implied vol

surfaces into local vol surfaces

• Stage 2: Monte Carlo (GPU, single precision). Compute sample

paths

• Stage 3: Payoff (CPU, double precision)

The aim was to create a GPU accelerated adjoint version of this code

using AD to compute the gradient.

Algorithmic Differentiation (AD) in a Nutshell

AD is a program transformation technique. It yields derivative code

of up to arbitrary order. AD software tools have been developed to

provide support to the application programmer. Refer to [1] for further

details.

References

[1] Naumann, U (2012). The Art of Differentiating Computer Pro-

grams. SIAM

Adjoint Algorithmic Differentiation of a GPU
Accelerated Application

Jacques du Toit (Numerical Algorithms Group) and Uwe Naumann (RWTH Aachen)

STCE


