
Jacques du Toit: jacques@nag.co.uk Viktor Mosenkis: mosenkis@stce.rwth-aachen.de

Implementation

Primal Adjoint

r q
θ

K Ω

P

e01be

e01bf e01ba

CN

r(1) q(1)

θ(1)

K(1) Ω

P(1)

e01be(1)

e01bf(1) e01ba(1)

CN(1)

Used the AD-enabled versions of the following NAG routines

• e01bef: Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable

• e01bff: Interpolated values, interpolant computed by e01bef, function only, one variable

• e01baf: Interpolating functions, cubic spline interpolant, one variable

• e02bcf: Evaluation of fitted cubic spline, function and derivatives

• f07cef: Solves a real tridiagonal system of linear equations using the LU factorization computed

by f07cdf

• f07cdf: LU factorization of real tridiagonal matrix

Performance (Crank–Nicolson mesh size (250× 500))

Greeks Size FD (s) AD (s) Speedup AD Mode

∂P
∂r(Tk)

+ ∂P
∂q(Tl)

+ ∂P
∂θ(Ti,Kj)

11 + 11 + 400 4 + 4 + 90 12 8.1 R

∂2P
∂S0∂θ(Ti,Kj)

400 200 24 8.3 FoR

∂2P
∂θ2(Ti,Kj)

400 100 < 100? 1 FoF

All 1222 300 124 2.4

ResultsAlgorithmic Differentiation

f : IRn
→ IRm , y = f (x)

First-Order AD

• First-Order Tangent-Linear Code f (1) (F)

y
(1) = ∇f(x) · x(1) ⇒ ∇f at O(n) · Cost(f)

• First-Order Adjoint Code f(1) (R)

x(1) = y
T
(1) · ∇f(x) ⇒ ∇f at O(m) · Cost(f)

Second-Order AD (m = 1)

• Second-Order Tangent-Linear Code f (1,2) (FoF)

y(1,2)

∈IR
= x

(1)

∈IRn

T
· ∇2f(x)

∈IRn×n

· x(2)

∈IRn
⇒ ∇2f at O(n2) · Cost(f)

• Second-Order Adjoint Code f
(2)
(1) (FoR)

x
(2)
(1)

∈IRn

= y(1)
∈IR

· ∇2f(x) · x(2)

⇒ ∇2f · x(2) at O(1) · Cost(f) resp. ∇2f at O(n) · Cost(f)

AD Tools

DCO

• first- and higher-order projections

• mathematically rigorous user interface

• exploitation of expression templates

• statement-level preaccumulation

• support for external functions (inclusion of tangent-linear or adjoint user code)

• support for (selected) NAG Library functions

• support for MPI, activity analysis, checkpointing, ...

AD-enabled NAG Library

s(x) =
m
∑

i=1

ciNi(x)

SUBROUTINE E01BAF A1S

(. . . , X, X A1S , ! x v a l u e o f t h e d a t a p o i n t s

, Y, Y A1S , ! y v a l u e o f t h e d a t a p o i n t s

, LAMDA, LAMDA A1S, ! n o r m a l i z e d B−s p l i n e k n o t s

, C , C A1S , ! B−s p l i n e c o e f f i c i e n t s

. . .)

Local Volatility Model

A stochastic process S = (St)t≥0 follows the local volatility model if

dSt =
(

r(t)− q(t)
)

St dt + σ(t, St)St dWt (1)

where r and q are term structures of interest and dividends and (Wt)t≥0 is a standard

Brownian motion. This model is used in many markets including equities and FX.

The function σ(t, x) is the local volatility of S and is unknown, but is computable

from the Dupire formula by using market quotes of call option prices.

Input Data Requirements

Computing σ in (1) from the Dupire formula requires a smooth continuum of market

quotes at all strikes and maturities. This does not exist. Instead practitioners take the

implied volatility surface and interpolate it into a smooth function. Liquid assets can

have more than 150 quotes, meaning the local volatility model can easily have more

than 200 input parameters.

Model Risk

Risk is typically treated as the sensitivity (derivative) of the price with respect to input

parameters. Practitioners are interested in some or all of the following:

∂P

∂S0

∂2P

∂S2
0

∂P

∂K

∂P

∂r(Tk)
(2)

∂P

∂q(Tℓ)

∂P

∂θ(Ti, Kj)

∂2P

∂θ2(Ti, Kj)

∂2P

∂S0∂θ(Ti, Kj)

where P is call option price in the local volatility model. Typically these derivatives

are computed by finite differences (bumping) which is very slow and inaccurate.

Pricing by PDE: Crank–Nicholson Method

From (1) we know following Andersen, Brotherton-Ratcliffe (1997) that

∂H(t, x)

∂t
+
1

2
v(t, x)

∂2H(t, x)

∂x2
+ b(t, x)

∂H(t, x)

∂x
= r(t)H(t, x) (3)

where x = ln(S) and H(t, x) = P (t, S) and

v(t, x) = σ2(t, ex), b(t, x) = r(t)− q(t)−
1

2
v(t, x). (4)

The PDE (3) can be discretised directly and solved using a Crank–Nicholson scheme

to obtain call option prices.

Test Problem

We took implied volatility data on a grid with 10 maturities and 40 strikes and inter-

polated using cubic splines. We used 10 point yield and dividend curves. This gave

a total of 1,223 derivatives in (2) to compute. We wrote highly optimised (maximal

caching of intermediate results) FD code and compared results and timings with an

implementation based on algorithmic differentiation.

Jacques du Toit (Numerical Algorithms Group), Viktor Mosenkis and Uwe Naumann (RWTH Aachen)

Algorithmic Differentiation of the Local Volatility Model STCE

